2025 ANNUAL WATER QUALITY REPORT

(Testing Performed January Through December 2024)

Saraland Water and Sewer Service

307 Shelton Beach Road Saraland, Alabama 36571 (251) 675-5126 saralandwater.com

We at Saraland Water and Sewer Service ("SWSS") work around the clock to provide top quality water to every tap. We ask that all of our customers help us protect our water sources, which are the heart of our community, our way of life, and our children's future.

We are pleased to report that our drinking water meets or exceeds Federal and State requirements. This report is designed to inform you about the quality water and services we deliver to you every day. We are committed to ensuring the quality of your water.

Four (4) groundwater wells producing from the		
Coastal Planes Deposit Holocene Aquifer.		
Lime for pH adjustment, phosphate to sequester		
iron and provide corrosion control, chlorine for		
disinfection, and fluoride for dental protection. In		
addition, Well #1 includes aeration, pre-		
chlorination, potassium permanganate, and		
filtration.		
Mobile Area Water and Sewer Service ("MAWSS")		
Four (4) storage tanks with a total capacity of		
3,750,000 gallons		
Approximately		
Mr. Dewey Thronson – Chairman		
Mr. O'Neill Robinson – Vice-Chairman		
Mrs. Nicole Robinson – Secretary/Treasurer		
Mr. Will Keeney – Board Member		
Mr. Nikhil Patel – Board Member		
Mr. Drew Taylor – Board Member		
John Vaughn		

SAFE DRINKING WATER ACT

The Safe Drinking Water Act ("SDWA") was signed into law on December 16, 1974. The purpose of the law is to assure that the nation's water supply systems serving the public meet minimum national standards for the protection of public health. The SDWA directed the U.S. Environmental Protection Agency ("EPA") to establish national drinking water standards. The 1996 Amendments to the SDWA created a need for Consumer Confidence Reports ("CCRs"), also known as the Annual Water Quality Reports, to reveal to consumers the detected amounts of contaminants in their drinking water.

SOURCE WATER ASSESSMENT

SWSS completed a Source Water Assessment Plan, which provides additional information such as potential sources of contamination. It includes a susceptibility analysis, which classifies potential contaminants as high, moderate, or non-susceptible to contaminating the water source. The plan was approved by the Alabama Department of Environmental Management ("ADEM") and is available for review in our office during normal business hours, or you may purchase a copy upon request for a nominal reproduction fee.

We are actively involved in protecting our water supply. You can help us protect our water resources by disposing of waste in the proper manner and reporting someone else who might not be doing so. Carefully follow instructions on pesticides and herbicides you use for your lawn and garden, and properly dispose of household chemicals, paints, and waste oil. Please help us protect our water supply.

GENERAL INFORMATION

The EPA advises: "All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791)."

The presence of contaminants does not necessarily indicate that water poses a health risk. Maximum Contaminant Levels ("MCLs") are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water evert day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material and it can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- Microbiological contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm run-off, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products
 of industrial processes and petroleum production, and cam also come from gas stations, storm water runoff,
 and septic systems.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water.

LEAD IN DRINKING WATER

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. SWSS is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components.

When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have it tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

PEOPLE WITH COMPROMISED IMMUNE SYSTEMS

The EPA advises: "Some people may be more vulnerable to contaminants in drinking water than the general population. People who are immuno-compromised such as cancer patients undergoing chemotherapy, organ transplant recipients, HIV/ AIDS positive or other immune system disorders, some elderly, and infants can be

particularly at risk from infections. People at risk should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791) or on EPA's website epa.gov/safewater."

WATER CONSERVATION

Due to recent increased precipitation and your cooperative efforts, we have been able to successfully avoid a critical water supply shortage. However, our long-term precipitation deficit continues and calls for ongoing vigilance in the protection of our water resources. We encourage you to continue to use water wisely and conscientiously in the common interest of all out citizens.

DEFINITIONS

Action Level ("AL"): The concentration of a contaminant that triggers treatment or other requirement a

water system shall follow.

Cryptosporidium and Giardia:

Two types of microscopic organisms that can cause illness in humans. There are many ways to come in contact with these organisms, including contaminated foods, swimming pools, recreational water, day care centers, contact with contaminated soil, nursing homes, and drinking water. SWSS is taking steps to ensure these organisms do

not pose a problem in the drinking water.

Disinfection Byproducts ("DBPs"):

Chemicals that may form when disinfectants (such as chlorine) react with plant matter and other naturally occurring materials in the water. These byproducts may pose

health risks in drinking water.

Initial Distribution System Evaluation ("IDSE") A four-quarter study conducted by water systems to identify distribution system

locations with high concentrations of THMs

Maximum Contaminant Level ("MCL") The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal ("MCLG") The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level ("MRDL") The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual
Disinfectant Level Goal
("MRDLG")

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

N/A Not applicable

ND None detected or below the detection limit

NR Not reported

NTU A measure of the clarity of water in nephelometric turbidity units. NTU greater than

5 is just noticeable to the average human.

Per- and Polyfluoroalkyl Substances ("PFAS")

PFAS are a group of man-made chemicals that includes thousands of chemicals. These chemicals have been in use since the early 1940s and are found in many consumer products like cookware, food packaging, and stain repellants. Perfluorooctanoic acid ("PFOA") and perfluorooctanesulfonic acid ("PFOS") are the most studied PFAS and have been voluntarily phased out by industry, though they are still persistent in the environment. Additional information regarding PFAS is available on the EPA website at www.epa.gov/pfas/

pCi/L A measure of radioactivity in picocuries per liter.

ppb Parts per billion or micrograms per liter (μg/L)

ppm Parts per million or milligrams per liter (mg/L)

ppt Parts per trillion or nanograms per liter (ng/L)

Primary Drinking Water Regulations

Legally enforceable standards that apply to public water systems. These standards protect drinking water quality limiting the levels of specific contaminants that can adversely affect public health and which are known or anticipated to occur in public water supplies.

Range The lowest to the highest values for all samples tested for each contaminant. If only

one sample is tested, no range is listed for that contaminant in the table.

Secondary Drinking Water Standards

State enforceable standards regarding cosmetic or aesthetic effects of drinking water.

Treatment Technique ("TT")

A required process intended to reduce the level of a contaminant in drinking water

MONITORING SCHEDULE

SWSS routinely monitors for contaminants in your drinking water according to Federal and State laws and in accordance with the regulatory schedule. Certain contaminants require monitoring less than once per year because the concentrations of these contaminants do not change frequently. This report contains results from the most recent monitoring according to schedule.

Constituents Monitored	Date Monitored	Constituents Monitored	Date Monitored
Inorganic Contaminants	2022	Synthetic Organic Contaminants	2024
Lead/Copper	2022	Volatile Organic Contaminants	2024
Microbiological Contaminants	2024	Disinfection By-Products	2024
Nitrates	2024	UCMR4 Contaminants	2020
Radioactive Contaminants	2022	PFAS Contaminants	2024
UCMR5 Contaminants	2024		

QUESTIONS

If you have any questions about this report or your water utility, please contact John Vaughn at 251-675-5126. We want our valued

customers to be informed about their water utility. If you wish to learn more, please attend any of our regularly scheduled meetings. They are held on the 1st and 3rd Thursdays of each month at the Saraland Water Service office at 5:30 p.m.

STANDARD LIST OF PRIMARY DRINKING WATER CONTAMINANTS

Contaminant	MCL	Contaminant	MCL
Bacteriological	IVICE	Organic Chemicals Cont.	IVICE
Total Coniform Bacteria	< 5%	p-Dichlorobenzene	75 ppb
Turbidity	TT	1,2-Dichloroethane	5 ppb
Fecal Coliform and E. Coli	0	1,1-Dichloroethylene	7 ppb
Fecal Indicators (Enterococci or Coliphage)	TT	cis-1,2-Dichloroethylene	70 ppb
Radiological		trans-1,2-Dichloroethylene	100 ppb
Beta/Photon Emitters (mrem/yr)	4	Dichloromethane	5 ppb
Alpha Emitters (pCi/L)	15	1,2-Dichloropropane	5 ppb
Combined Radium (pCi/L)	5	Di (2-ethylhexyl) adipate	
Uranium	30 ppb	Di (2-ethylhexyl) phthalates	400 ppb 6 ppb
Inorganic Chemicals	30 ppb	Dinoseb	
	6 ppb	Dioxin [2,3,7,8-TCDD]	7 ppb
Arsenic			30 ppq
	10 ppb 7	Diquat Endothall	20 ppb
Asbestos (MFL)		Endrin	100 ppb
Barium	2 ppm		2 ppb TT
Beryllium	4 ppb	Epichlorohydrin	
Bromate	10 ppb	Ethylbenzene	700 ppb
Cadmium	5 ppb	Ethylene dibromide	50 ppt
Chloramines	4 ppm	Glyphosate	700 ppb
Chlorine	4 ppm	HAA5 (haloacetic acids 5)	60 ppb
Chlorine Dioxide	800 ppb	Heptachlor	400 ppt
Chlorite	1 ppm	Heptachlor epoxide	200 ppt
Chromium	100 ppb	Hexachlorobenzene	1 ppb
Copper	AL = 1.3 ppm	Hexachlorocyclopentadiene	50 ppb
Cyanide	200 ppb	Lindane	200 ppt
Fluoride	4 ppm	Methoxychlor	40 ppb
Lead	AL = 15 ppb	Oxamyl [Vydate]	200 ppb
Mercury	2 ppb	Pentachlorophenol	1 ppb
Nitrate	10 ppm	Picloram	500 ppb
Nitrite	1 ppm	Polychlorinated biphenyls (PCBs)	500 ppt
Total Nitrate and Nitrite	10 ppm	Simazine	4 ppb
Selenium	50 ppb	Styrene	100 ppb
Thallium	2 ppb	Tetrachloroethylene	5 ppb
Organic Chemicals		Toluene	1 ppm
Acrylamide	TT	TOC (Total Organic Carbon)	TT
Alachlor	2 ppb	TTHMs (Total Trihalomethanes)	80 ppb
Atrazine	3 ppb	Toxaphene	3 ppb
Benzene	5 ppb	2, 4, 5-TP (Silvex)	50 ppb
Benzo(a)pyrene [PAHs]	200 ppt	1, 2, 4-Trichlorobenzene	70 ppb
Carbofuran	40 ppb	1, 1, 1-Trichloroethane	200 ppb
Carbon tetrachloride	5 ppb	1, 1, 2-Trichloroethane	5 ppb
Chlordane	2 ppb	Trichloroethylene	5 ppb
Chlorobenzene	100 ppb	Vinyl Chloride	2 ppb
2,4-D	70 ppb	Xylenes	10 ppm
Dalapon	200 ppb		•
Dibromochloropropane	200 ppt		
o-Dichlorobenzene	600 ppb		

REGULATED SUBSTANCES

Substances	MCLG	MCL	Highest Detect	Range
Barium, ppm	2	2 ppm	0.09 ppm	0.02 - 0.09 ppm
Chlorine, ppm	MRDLG = 4	MRDL = 4 ppm	ND	
Chlorine Dioxide, ppb	MRDLG = 800	MRDL = 800 ppb	ND	
Chlorite, ppm	800 ppb	1 ppm	ND	
Copper, ppm	1.3	AL = 1.3 ppm	0.0068 ppm	
Fluoride, ppm	4	4 ppm	0.55 ppm	ND - 0.55 ppm
Lead, ppb	0	AL = 15 ppb	ND	
Nitrate, ppm	10	10 ppm	0.76 ppm	ND - 0.76 ppm
Total NO2 + NO3, mg/L		10 ppm	ND	
Turbidity, NTU	N/A	TT	ND	
Total Organic Carbon (TOC)	N/A	TT	ND	
Total Trihalomethanes, ppb	N/A	80 ppb	1 ppb	ND - 1 ppb
Haloacetic Acids (HAA5), ppb	N/A	60 ppb	ND	
Gross Alpha, pCi/L	0	15	ND	
Gross Beta, mrem/yr	0	4	ND	
Combined Radium, pCi/L	0	5	ND	

SUBSTANCES REGULATED UNDER SECONDARY DRINKING WATER STANDARDS

Substances	Highest Detect	Substances	Highest Detect
Aluminum, ppm	ND	Sulfate as SO4, ppm	ND
Chloride, ppm	ND	Calcium, ppm	ND
Color, units	ND	Carbon Dioxide, ppm	ND
Total Dissolved Solids, ppm	ND	Magnesium, ppm	ND
Ph	ND	Hardness as CaCO3, ppm	ND
Manganese, ppm	0.029	Temperature, C	ND
Odor, TON	ND	Corrosivity (saturation index)	ND
Alkalinity as CaCO3, ppm	ND	Specific Conductance, µmho/cm	ND
Sodium, ppm	ND	Orthophosphate as P, ppm	ND

PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS)

Substances	MCLG	MCL	Highest Detect	Range
Perfluorobutanesulfonic acid (PFBS), ppb	Index*	Index*	0.013	ND - 0.013
Perfluorohexanesulfonic acid (PFHxS)	10 ppt	10 ppt	0.037	ND - 0.037
Perfluorohexanoic acid (PFHxA), ppb	N/A	N/A	0.11	ND - 0.11
Perfluoroheptanoic acid (PFHpA), ppb	N/A	N/A	0.048	ND - 0.048
Perfluorooctanesulfonic acid (PFOS), ppb	0	4.0	0.042	ND - 0.042
Perfluoroonctanoic acid (PFOA), ppb	0	4.0	0.043	ND - 0.043
Perfluorononanoic acid (PFNA), ppt	10	10	21	ND - 21
Total PFAS, ppb			0.3	0.011 - 0.3

UCMR 4 CONTAMINANTS

Substances	Detected	Substances	Detected
Manganese, ppm	ND - 0.029	2-methoxyethanol	ND
Germanium	ND	allyl alcohol (2-propen-1-ol)	ND
Alpha-hexachlorocyclohexane	ND	microcystin-LA	ND
Chlorpyrifos	ND	microcystin-LF	ND
Dimethipin	ND	microcystin-LR	ND
Ethoprop	ND	microcystin-LY	ND
Oxyfluorfen	ND	microcystin-RR	ND
Profenofos	ND	microcystin-YR	ND
Tebuconazole	ND	nodularin-R	ND
total permethrin (cis- & trans-)	ND	anatoxin-a	ND
Tribufos	ND	Cylindrospermopsin	ND
butylated hydroxyanisole	ND	total microcystins	ND
o-toluidine	ND	HAA5, ppb	ND
Quinoline	ND	HAA6Br	ND
1-butanol	ND	HAA9	ND

UCMR 5 CONTAMINANTS

Substances	Detected
ADONA, ppb	ND
hexafluoropropylene oxide dimer acid (HFPO-DA) (GenX), ppb	ND
Perfluorohexanoic acid (PFHxA), ppb	0.0016 - 0.084
perfluorotetradecanoic acid (PFTA), ppb	ND
1H,1H, 2H, 2H-perfluorodecane sulfonic acid (8:2FTS), ppb	0.0016 - 0.0017
1H,1H, 2H, 2H-perfluorohexane sulfonic acid (4:2FTS), ppb	0.001
1H,1H, 2H, 2H-perfluorooctane sulfonic acid (6:2FTS), ppb	0.0043 - 0.011
nonafluoro-3,6-dioxaheptanoic acid (NFDHA), ppb	0.0064 - 0.066
perfluoro (2-ethoxyethane) sulfonic acid (PFEESA), ppb	0.001
perfluoro-3-methoxypropanoic acid (PFMPA), ppb	0.0013
perfluoro-4-methoxybutanoic acid (PFMBA), ppb	0.001
perfluorobutanoic acid (PFBA), ppb	0.0016 - 0.0027
perfluoroheptanesulfonic acid (PFHpS), ppb	0.001
perfluoropentanesulfonic acid (PFPeS), ppb	0.0013
perfluoropentanoic acid (PFPeA), ppb	0.0018 - 0.0055

DETECTED CONTAMINANTS

Substances	MCLG	MCL	Detected	Likely Source
Alpha Emitters	0	15 PCi/l	Avg. 0.34	Erosion of natural deposits
Radium 228	0	5 PCi/l	Avg. 0.57	Erosion of natural deposits
Barium	2 ppm	2 ppm	0.018 - 0.088 ppm	Drilling & metal refinery
				discharge, erosion
Beryllium		4 ppb	0.15 - 0.39 ppb	Discharge from metal
				refineries and coal-burning
				factories; discharge from
				electrical, aerospace, and
				defense industries.
Copper		AL=1.3 ppm	ND - 0.13 ppm	Plumbing erosion; erosion;
et		4	ND 055 mm	wood preservative leaching
Fluoride		4 ppm	ND - 0.55 ppm	Erosion, water additive for teeth, factory discharge
Mercury		2 ppb	ND - 0.18 ppb	Erosion of natural deposits;
iviercury		շ իին	ΝΟ - 0.10 μμυ	discharge from refineries and
				factories; runoff from landfills;
				runoff from cropland.
Nitrate		10 ppm	ND - 0.76 ppm	Fertilizer runoff; septic &
				sewage leaching; erosion
Total Nitrate and Nitrite		10 ppm	ND - 0.76 ppm	Runoff from fertilizer use;
				leaching from septic tanks,
				sewage; erosion of natural
				deposits.
TTHMs (Total		80 ppb	ND - 1 ppb	By-product of drinking water
Trihalomethanes)			0.55	chlorination
Copper	1.3 ppm	AL = 1.3 ppm	0.55 ppm	Plumbing corrosion; erosion;
Managanas		0.05	ND 0.030 mm	wood preservative leaching
Manganese		0.05 ppm	ND - 0.029 ppm	Naturally occurring; erosion;
Aluminum		0.2	ND - 0.09	leaching from pipes Erosion of natural deposits or
Aluminum		0.2	ND - 0.09	as a result of treatment
Chloride		250 ppm	7.1 - 26.4 ppm	Naturally occurring in the
- emoriac		230 ββίτι	7.1 20.4 ppm	environment or from runoff
				environiment of front failon